Electromagnetic stress–energy tensor | Wikipedia audio article
In relativistic physics, the electromagnetic
stress-energy tensor is the contribution to the stress-energy tensor due to the electromagnetic
field. The stress-energy tensor describes the flow of energy and momentum in spacetime.
The electromagnetic stress-energy tensor contains the negative of the classical Maxwell
stress tensor that governs the electromagnetic interactions. == Definition == === SI units ===
In free space and flat space-time, the electromagnetic stress-energy tensor in SI units is T μ
ν = 1 μ 0 [ F μ
α F ν α − 1
4 η μ
ν F α
β F α
β ].
{displaystyle T^{mu nu }={frac {1}{mu
_{0}}}left[F^{mu alpha }F^{nu }{}_{alpha }-{frac {1}{4}}eta ^{mu nu }F_{alpha
beta }F^{alpha beta }right],.} where F μ
ν {displaystyle F^{mu nu }}
is the electromagnetic tensor and where η μ
ν {displaystyle eta _{mu nu }}
is the Minkowski metric tensor of metric signature (−+++). When using the metric with a signature
(+−−−), the expression for T μ
ν {displaystyle T^{mu nu }}
will have the opposite sign. Explicitly in matrix form: T μ
ν = [ 1
2 ( ϵ 0 E 2 + 1 μ 0 B 2 ) S x / c S y / c S z / c S x / c − σ xx − σ xy − σ xz S y / c − σ yx − σ yy − σ yz S z / c − σ zx − σ zy − σ ZZ ] , {displaystyle T^{mu nu }={begin{bmatrix}{frac
{1}{2}}left(epsilon _{0}E^{2}+{frac {1}{mu _{0}}}B^{2}right)&S_{text{x}}/c&S_{text{y}}/c&S_{text{z}}/c\S_{text{x}}/c&-sigma
_{text{xx}}&-sigma _{text{xy}}&-sigma _{text{xz}}\S_{text{y}}/c&-sigma _{text{yx}}&-sigma
_{text{yy}}&-sigma _{text{yz}}\S_{text{z}}/c&-sigma _{text{zx}}&-sigma _{text{zy}}&-sigma
_{text{zz}}end{bmatrix}},} where S = 1 μ 0 E × B , {displaystyle mathbf {S} ={frac {1}{mu
_{0}}}mathbf {E} times mathbf {B} ,} is the Poynting vector, σ i
j = ϵ 0 E i E j + 1 μ 0 B i B j − 1
2 ( ϵ 0 E 2 + 1 μ 0 B 2 ) δ i
j {displaystyle sigma _{ij}=epsilon _{0}E_{i}E_{j}+{frac
{1}{mu _{0}}}B_{i}B_{j}-{frac {1}{2}}left(epsilon _{0}E^{2}+{frac {1}{mu _{0}}}B^{2}right)delta
_{ij}} is the Maxwell stress tensor, and c is the
speed of light.
Thus, T μ
ν {displaystyle T^{mu nu }}
is expressed and measured in SI pressure units (pascals). === CGS units ===
The permittivity of free space and permeability of free space in cgs-Gaussian units are ϵ 0 = 1 4
π, μ 0 =
4 π {displaystyle epsilon _{0}={frac {1}{4pi
}},quad mu _{0}=4pi ,} then: T μ
ν = 1 4
π [ F μ
α F ν α − 1
4 η μ
ν F α
β F α
β ]. {displaystyle T^{mu nu }={frac {1}{4pi
}}[F^{mu alpha }F^{nu }{}_{alpha }-{frac {1}{4}}eta ^{mu nu }F_{alpha beta }F^{alpha
beta }],.} and in explicit matrix form: T μ
ν = [ 1 8
π ( E 2 + B 2 ) S x / c S y / c S z / c S x / c − σ xx − σ xy − σ xz S y / c − σ yx − σ yy − σ yz S z / c − σ zx − σ zy − σ ZZ ] {displaystyle T^{mu nu }={begin{bmatrix}{frac
{1}{8pi }}(E^{2}+B^{2})&S_{text{x}}/c&S_{text{y}}/c&S_{text{z}}/c\S_{text{x}}/c&-sigma _{text{xx}}&-sigma _{text{xy}}&-sigma
_{text{xz}}\S_{text{y}}/c&-sigma _{text{yx}}&-sigma _{text{yy}}&-sigma _{text{yz}}\S_{text{z}}/c&-sigma
_{text{zx}}&-sigma _{text{zy}}&-sigma _{text{zz}}end{bmatrix}}}
where Poynting vector becomes: S = c 4
π E × B .
{displaystyle mathbf {S} ={frac {c}{4pi
}}mathbf {E} times mathbf {B} .} The stress-energy tensor for an electromagnetic
field in a dielectric medium is less well understood and is the subject of the unresolved
Abraham–Minkowski controversy.The element T μ
ν {displaystyle T^{mu nu }!}
of the stress-energy tensor represents the flux of the μth-component of the four-momentum
of the electromagnetic field, P μ {displaystyle P^{mu }!}
, going through a hyperplane ( x ν {displaystyle x^{nu }}
is constant). It represents the contribution of electromagnetism to the source of the gravitational
field (curvature of space-time) in general relativity.
== Algebraic properties ==
The electromagnetic stress-energy tensor has several algebraic properties: It is a symmetric tensor: T μ
ν = T ν
μ {displaystyle T^{mu nu }=T^{nu mu }}
The tensor T ν α {displaystyle T^{nu }{}_{alpha }}
is traceless: T α α =
0 {displaystyle T^{alpha }{}_{alpha }=0}
.The energy density is positive-definite: T 00 ≥
0 {displaystyle T^{00}geq 0}
The symmetry of the tensor is as for a general stress-energy tensor in general relativity.
The trace of the energy-momentum tensor is a Lorentz scalar; the electromagnetic field
(and in particular electromagnetic waves) has no Lorentz-invariant energy scale, so
its energy-momentum tensor must have a vanishing trace. This trace-lessness eventually relates
to the masslessness of the photon. == Conservation laws == The electromagnetic stress-energy tensor
allows a compact way of writing the conservation laws of linear momentum and energy in electromagnetism.
The divergence of the stress-energy tensor is: ∂ ν T μ
ν + η μ
ρ f ρ =
0 {displaystyle partial _{nu }T^{mu nu
}+eta ^{mu rho },f_{rho }=0,} where f ρ {displaystyle f_{rho }}
is the (4D) Lorentz force per unit volume on matter.
This equation is equivalent to the following 4D conservation laws ∂ u e
m ∂
t + ∇ ⋅ S + J ⋅ E =
0 {displaystyle {frac {partial u_{mathrm
{em} }}{partial t}}+mathbf {nabla } not mathbf {S} +mathbf {J} not mathbf {E}
=0,} ∂ p e
m ∂
t − ∇ ⋅
σ +
ρ E + J × B =
0 {displaystyle {frac {partial mathbf {p}
_{mathrm {em} }}{partial t}}-mathbf {nabla } dot sigma +rho mathbf {E} +mathbf
{J} times mathbf {B} =0,} (or equivalently f + ϵ 0 μ 0 ∂ S ∂
t =
∇ ⋅ σ {displaystyle mathbf {f} +epsilon _{0}mu
_{0}{frac {partial mathbf {S} }{partial t}},=nabla not mathbf {sigma } }
with f {displaystyle mathbf {f} }
being the Lorentz force density),respectively describing the flux of electromagnetic energy
density u e
m = ϵ 0 2 E 2 + 1 2 μ 0 B 2 {displaystyle u_{mathrm {em} }={frac {epsilon
_{0}}{2}}E^{2}+{frac {1}{2mu _{0}}}B^{2},} and electromagnetic momentum density p e
m = S c 2 {displaystyle mathbf {p} _{mathrm {em}
}={mathbf {S} over {c^{2}}}} where J is the electric current density and
ρ the electric charge density.
== See also ==
Ricci calculus Covariant formulation of classical electromagnetism
Mathematical descriptions of the electromagnetic field
Maxwell’s equations Maxwell’s equations in curved spacetime
General relativity Einstein field equations
Magnetohydrodynamics Vector calculus.
𝗢𝗿𝗮𝗰𝗹𝗲 𝗼𝗳 𝗛𝗲𝗮𝘃𝗲𝗻𝘀 ᶦˢ ʸᵒᵘʳ ᵍᵘᵃʳᵈᶦᵃⁿ ᵃⁿᵍᵉˡ ᵗʳʸᶦⁿᵍ ᵗᵒ ˢᵉⁿᵈ ʸᵒᵘ ᵃⁿ ᵘʳᵍᵉⁿᵗ ᵐᵉˢˢᵃᵍᵉ? ɪꜰ ʏᴏᴜ ꜱᴇᴇᴋ ɢᴜɪᴅᴀɴᴄᴇ ᴀɴᴅ ɪɴꜱɪɢʜᴛꜱ ɪɴᴛᴏ ᴛʜᴇ ᴘᴀꜱᴛ, ᴘʀᴇꜱᴇɴᴛ, ᴀɴᴅ ꜰᴜᴛᴜʀᴇ ᴡɪᴛʜ qᴜᴇꜱᴛɪᴏɴꜱ ᴀʙᴏᴜᴛ ʟᴏᴠᴇ, ʀᴇʟᴀᴛɪᴏɴꜱʜɪᴘꜱ, ᴏʀ ᴍᴏɴᴇʏ – ᴄᴏɴɴᴇᴄᴛ ᴡɪᴛʜ ʏᴏᴜʀ ᴀɴɢᴇʟ ᴛᴏᴅᴀʏ https://aef5aa-t-ztics23v7-ljxbw4j.hop.clickbank.net/